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I.       INTRODUCTION 

Fracture mechanics of gun propellants has become recognized as an 
important area of research in the gun propulsion community. ""' The ballistic 
performances of conventional and experimental propellants have been shown to 
depend on the mechanical response of the grains to the high stress and high 
strain rate environment experienced during the interior ballistic cycle. In 
interior ballistic codes, the grain is considered to be an incompressible, 
nondeformable solid that burns with a mass generation rate that is determined 
by the linear burning rate and exposed surface area. If grain fracture 
occurs, more surface area is exposed which results in a higher mass generation 
rate than planned. This leads to poor performance and possibly to gun 
failure.     Vulnerability  of  a   propellant  is  also  influenced   by   its  mechanical 

i 
H.   Schubert  and D.   Schmitt,   "Embrittlement of Gun Powder," Proceedings of the 
International  Symposium  on Gun  Propellants,   Dover,   NJ,   p.  2.11,   October   1973. 

P. J. Greidanus, "Simple Determination of the Mechanical Behavior of Double- 
Based Rocket Propellants Under High Loading Rates," Propulsion and Energetics 
Panel,   AGARD,   i)7th (A) Meeting,   Paper No.  23,   Porz-Wahn,   Germany,   May  1976. 

3p. Benhaim, J. L. Paulin, B. Zeller, "Investigation on Gun Propellant Break- 
up and Its Effect in Interior Ballistics," Proceedings of the Uth 
International      Symposium on Ballistics,   Monterey,   CA,   October  1978. 

^R. A. Wires, J. P. Pfau, J. J. Rocchio, "The Effect of High Rates of Applied 
Force and Temperature on the Mechanical Properties of Gun Propellants," 1979 
JANNAF Propulsion Meeting, Vol. 1, CPIA Publication 300, pp 25-50, March 
1979. 

-'C. W. Fong, "Mechanical Properties of Gun Propellants - An Assessment of 
Possible Approaches to Laboratory Testing," Report No. WSRL-0120-TM, Weapons 
Systems Research Laboratory,   Adelaide,   South Australia,   December  1979- 

°C. W. Fong, "Dynamic Mechanical Properties of Gun Propellants - The 
Relationship between Impact Fracture Properties and Secondary Loss 
Transitions," Report No. WSRL-020M-TR, Weapons Systems Research Laboratory, 
Adelaide,   South  Australia,   March   1981. 

'A. W. Horst, "The Role of Propellant Mechanical Properties in Propelling 
Charge Phenomenology," 1981 JANNAF Structures and Mechanical Behavior 
Subcommittee Meeting, Vol. 1, CPIA Publication 351, pp Hll-IS1!, December 
1981. 

R. J. Lieb, J. J. Rocchio, and A. A. Koszoru, "Impact Mechanical Properties 
Tester for Gun Propellants," 1981 JANNAF Structures and Mechanical Behavior 
Subcommittee Meeting,   Vol.1,   CPIA  Publication 351,   pp  155-173,   December  1981. 

5c. W. Fong and B. K. Moy, "Ballistic Criteria for Propellant Grain Fracture 
In the GAU-8/A 30MM Gun, Report not yet published, Direct Fire Weapons 
Division,     Air Force Armament Laboratory,   Eglin AFB,   FL,   December   1981. 



properties. It has been shown that a grain that is brittle and fractures upon 
exposure to a shaped charge jet or spall threat reacts more violently than a 
tougher, less brittle grain. Understanding the mechanical response of grains 
to conditions similar to those experienced during the ballistic cycle can help 
direct changes in the formulation or the processing techniques so the 
performance and vulnerability properties of the propellant can be improved. 

Efforts by several groups to construct a high strain rate device have met 
with various degrees of success. However, the experimental apparatus used in 
these tests either had too low a strain rate to simulate the rates expected 
during the interior ballistic cycle, or the sample displacement was either 
calculated or inferred. To remedy this condition, a high strain rate tester 
that simultaneously measures sample displacement and impact force in a simple 
and direct manner was constructed. 

The Drop Weight Mechanical Properties Tester (DWMPT) developed and tested 
in this study is a modified version of the drop weight tester used by Wires. 
Wires developed this tester by incorporating the simultaneous measurement of 
force and sample displacement into a device similar to one used by Greidanus. 
A standard drop weight tester was modified by Greidanus so that large pressure 
impulses of the magnitude experienced in rocket motors could be applied to 
propellant. The displacement, however, was calculated rather than being 
measured directly. The pressure pulses were generated by dropping a weight 
cage through a preselected distance onto the sample. Wires had the weight 
strike the sample which was mounted on a platform especially designed and 
equipped with strain gages to act as a load cell. The force, including its 
time variation, on the sample could be determined from the recorded axial 
strain of the platform. The displacement measurement was accomplished by 
optically tracking a light/dark demarcation line on a cap placed on top of the 
grain. Wires found that high strain rate mechanical measurements on 
propellants could be made consistently. The accuracy of the device was not 
established and may have been poor since it deduced incorrect mechanical 
properties for one well-documented and understood engineering material. The 
measured values of displacement and force, while shown to be accurate under 
static calibration conditions, were Indirect measurements that did not take 
into account dynamic effects of the apparatus. Indications of. eccentric 
impacts causing couples to act on the sample were also found. 

The objectives of this study, therefore, were to develop the drop weight 
tester by modifying the apparatus used by Wires so that force and displacement 
are measured more directly, and to standardize the impact device with a 
material of known properties to ensure the accuracy of  the measurements. 

II.     EXPERIMENTAL METHOD 

A.   The Apparatus 

The drop weight tester developed in this study is a modified version of 
the tester used by Wires, described in the Introduction. The DWMPT, 
illustrated in Figure 1, delivers an impulse to a sample placed between the 
impact force transducer, attached to the base, and a specially built ram and 
guide,   illustrated in Figures 2 and  3.      The ram  serves to transmit  the impact 
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Figure 1,  The Drop Weight Mechanical Properties Tester (DWMPT) 
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Figure 2. Detail of the DWMPT Showing the Relationship Between 
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force as well as aid in the measurement of sample compression. The guide 
controls the ram motion so the direction of impact and sample displacement 
are known. The impact force is delivered by a falling weight cage for which 
both the mass and drop height can be adjusted. This operation is discussed 
in more detail below. 

The DWMPT is able to record simultaneous measurements of force and 
displacement at ram  speeds of up to 5  m/sec. A  maximum  force  of 22 kN  can 
be applied to a sample with a maximum diameter and length of 12.5 mm and 60 
mm, respectively (although the maximum desired length would be about 30 mm to 
prevent sample bending). This enables gun propellant grains to be subjected 
to pressure impulses of up to 200 MPa, well beyond the yield strength of any 
grain yet tested. The smallest resolution of sample displacement in a 
typical drop is about 0.01   mm. 

The apparatus consists of an Olin-Mathieson Drop Weight Tester, Model 7» 
that has been modified by putting a PCB, Model 200A, Piezotronic impact force 
transducer in place of the standard sample anvil. The ram and guide are 
mounted directly over the force transducer to record the change in length of 
the sample, which is placed between the ram and transducer. A 1-kg weight 
cage provides the impact force by falling through a preselected height (0 to 
^5 cm) onto the ram head. The mass of the cage can be changed (1 to 7 kg) by 
adding weights so the energy and velocity of impact can be varied 
independently. 

The impact force is transmitted through the ram which is designed to aid 
in the measurement of change in sample length by providing a light/dark 
demarcation line that is tracked by an Optron Electro-Optical Displacement 
Follower (EQDF), Model 501. Back lighting for a knife edge is provided by the 
illumination of a diffusion plate with an incandescent bulb supplied with a 
regulated DC current. The displacement follower tracks the back-lit knife 
edge mounted on the ram head by locking onto the demarcation line being 
projected   onto   a   photoelectric   screen. Electrons   emitted   from   the   screen 
are deflected through an aperture by magnetic coils placed along the flight 
path of the electrons. The current in the coils is adjusted to maximize the 
flow of electrons into the aperture. As the demarcation line moves, the 
change in the coil deflection current is measured and correlated to the 
distance the line moved. This method of measurement is light intensity 
independent, in principle, and thereby permits optical displacement 
measurements independent  of intensity variations of  the optical  field. 

Calibration of the displacement follower is easily made by placing feeler 
gages or blocks of known thickness between the force transducer and ram shaft. 
The voltage output can then be adjusted to the desired calibration. The 
linearity of the EQDF is 0.25 percent of the full scale. Its resolution is 
determined by the field of view which can be adjusted by placing spacer rings 
between the lens and main body of the EQDF. The field of view is set for the 
the displacement range of interest. High resolution requires a small field 
of view whereas larger fields of view correspondingly reduce the resolution. 
Table 1 lists various fields of view and their resolutions. The wide range 
of resolutions makes the EQDF a particularly valuable tool for examining 
sample failure.     The resolution  used  in  these  tests was about 0.001   mm. 

12 



TABLE  1.     FIELD OF VIEW  AND TYPICAL  RESOLUTIONS FOR  THE EODF 

Field of View Resolution 

10 mm 0.002    mm 
5 0.001 
1 0.0002 

The ram guide ensures that the measured displacement follows the sample 
displacement as closely as possible, and also serves to keep the applied force 
in the vertical direction. The ram shaft and guide fit together with close 
tolerances, so there is little play, but the contact surfaces are highly 
polished so the ram slides freely in the guide. Both pieces and the guide 
supports are made of hardened (H2 Rockwell) stainless steel and this assembly 
is bolted to the base of the DWMPT. The guide is bolted to the supports so 
that  samples of various length can be accommodated. 

The force transmitted through the ram to the sample is measured by the 
force transducer mounted on a stainless steel base. The output of the 
transducer is fed into a Kistler charge amplifier, Model SOME. The gage and 
amplifier were calibrated as a unit on an Instron, Model TTC, Universal 
Testing Instrument by applying a known load to the transducer, grounding the 
amplifier input, quickly releasing the load, and noting the change in the 
amplifier output voltage. This method eliminates almost all amplifier drift 
since  the  output voltage  is generated very quickly. 

The data acquisition for propellants is performed as illustrated in 
Figure k. The outputs of the displacement follower and the charge amplifier 
are fed into a Nicolet, Series 2090, Explorer III Digital Oscilloscope which 
records the data on two time-based channels. These data are stored on a 
floppy disk and later analyzed on a PDF 11M5 computer. A second method is 
illustrated in Figure 5 and was used in the calibration of the DWMPT. The 
data are fed directly into the computer through the four channels needed 
during  the  calibration  procedure. 

B.   The  Procedure 

For the calibration of the DWMPT, right circular cylinders with a length 
of 11.^ mm, a diameter of 6.36 mm, and made of 7075-T6 aluminum were used. 
The dimensions approximate propellant grain size and the material was chosen 
because it has a strain rate independent elastic modulus at the rates 
tested,10 providing a standard for high strain rate testing. The aluminum 
cylinders were placed in the drop weight tester as described in the 
Introduction. Two Micro-Measurements precision strain gages. Model EA13- 
125BT-120,   were  mounted on opposite  sides of  the  cylinder,   as   illustrated   in 

10T. Nichols, "Dynamic Tensile Testing of Structural Materials Using a Split 
Hopkinson Bar Apparatus," Report Number AFWAL-TR-80-^053, P. 22, Materials 
Laboratory, Air Force Wright Aeronautical Laboratories, Wright Patterson Air 
Force Base,   OH,   October  1980. 

13 



STRAIN 
GAGE # 1 

CAL 

STRAIN 
GAGE # 2 

CAL 

BRIDGE 

CIRCUIT 

BRIDGE 

CIRCUIT 

EODF 
(DISP) 

CAL 

AMP 

FORCE 
GAGE 

CAL 

A/D 

C 

O 

N 

V 

E 

R 

T 

E 

R 

Figure 4.  Schematic Diagram of the Data Acquisition 
During Standardization. 

in 



EODF 

(DISPLACEMENT) 
2-CHANNEL 

DIGITAL 
OSCILLOSCOPE 

(DATA 
STORAGE) 

P D P 

11/34 
CHARGE   AMP 

(FORCE) 

Figure 5.  Schematic Diagram of the Data Acquisition 
During Normal Testing. 

15 



Figure 6. These gages provided additional data, as described below. One 
cylinder was tested with its ends left unlubricated, while the other had a 
light oil  applied to the ends prior to testing. 

There are few actual measured values for the compressional modulus, since 
this measurement is difficult to perform. The sample-mounted strain gages 
provided independent confirmation of the handbook modulus value, and also 
monitored any sample bending that may have taken place during compression. 
The average strain gage value was used for the modulus computation. 

During the Impact tester standardization, two aspects of the rig were 
carefully examined. First, the rig motion during the drop test was measured. 
Compensation for this motion was incorporated into the calculation of the 
modulus. Then, the degree of sample bending introduced by the rig during 
testing was also determined. These tests were necessary for the proper 
interpretation of the data and are described more completely below. 

The drop weight for the modulus standardization tests was 1 kg and the 
drop height, the distance the weight cage falls before impact, was 11 cm. 
These values provided the proper combination of a moderately high strain rate 
(between l»5 and 50 per second) and significant displacement (about 0.110 mm) 
without exceeding the range of the force transducer. For the noncoaxial 
Impact (bending) tests the drop height was changed to 5 cm to reduce the 
possibility of cylinder damage.     The drop weight remained at 1  kg. 

C. Ihe Effect of ihfl Rig Motion on Sample Displacement 

The method described above for the optical measurement of displacement 
can cause the measured values to be larger than the actual sample displacement 
since the motion of the apparatus itself will be added to any sample 
compression. This is especially true if the samples have a large modulus. 
Since the displacement follower Is mounted independently of the impact tester, 
any compression of the ram, or movement of the force transducer, base, or 
anything below the drop weight tester will be recorded as displacement of the 
sample.     To correct for  this,   consider  the following:   If 

ER =   Effective Rig Modulus. 

Ep =  Corrected or True  Modulus. 

Eg r  Optron Measured Modulus. 

F =  Force Applied  to  the  Sample. 

A =   Sample  Cross  Sectional  Area. 

dL =  Total  Measured Change  in Length. 

L =   Sample Length. 

dL,, =  Actual  Change in  Sample Length. 

dX = Displacement Due  to Rig Motion. 

16 
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Then 

where 

E0       =   a0 /  e0l (D 

o0 =  F/A 

e0 =  dL/L 

Therefore 

E0 =  a0/(dL/L) 

=   ^/[(dLg +   dX)/L] 

=   a0/[dLs/L +  dX/L] 

(2) 

Where 

Or 

1/E0  =   (dLs/L)/a0 + (dX/L)/a0 (3) 

=  1/EC +  1/ER. 

ER       x a0/(dX/L) W 

=  (F/A)   (L/dX) 

=  (F/dX)  (L/A) 

=   S  (L/A), 

and S is the slope of the force vs displacement curve of the rig (Figure 7). 
The correct value  of  the  modulus is  then  given  by 

1/EC  =     1/E0     -     1/ER (5) 

Thus, it can be seen that if Eg << ER, then Ec 1 EQ, and no correction is 
necessary. However, the closer Ec is to ER the lower EQ will be. As a 
result, a correction has to be considered for aluminum, which has a relatively 
high modulus, whereas the propellant modulus may be low enough so that no 
correction   is   required. 

D.   The  Test  for Noncoaxial  Impact  (Bending) 

An aluminum sample was tested with the drop height set at 5 cm and the 
drop weight set to 1 kg. After testing, the sample was then rotated 90° about 
the longitudinal axis of the cylinder and tested again. This procedure was 
repeated and concluded with a final test at the original orientation. The 
difference in the strain measured by the strain patches mounted on opposite 
sides of the cylinder is a measure of the bending that the sample has 
undergone  during  impact. 
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If sample bending during compression is due to nonparallel sample faces, 
then the degree of bending should be independent of the orientation, since the 
strain gages rotate with the sample. If bending is due to nonparallel rig 
surfaces or repeated eccentric impacts, then the relative bending should vary 
sinusoidally with orientation. It is most likely that both causes contribute 
to bending. If the percent difference in strain, Y, is plotted against 
orientation, 0, and fitted to Equation 6, 

y = A + B cos ( e- e0) (6) 

then A represents the amount of bending due to the cylinder end surfaces and B 
represents the maximum amount due to the rig. Once A and B are found then 
the degree of bending due to the rig can be determined. 

III.   RESULTS AND DISCUSSION 

A. UJS Jiig Motion 

Rig motion results in lower modulus values due to the larger optical 
displacement measurements, discussed earlier. Figure 8 shows the force and 
displacement vs time curve acquired with no sample in the rig. From these 
data, the slope of the force vs displacement curve, shown in Figure 7, can be 
determined. If the slope of this curve is substituted into Equation H, the 
"effective rig modulus" for a sample of these dimensions can be determined. 
An average slope of 389 ± 30 kN/mm was found for the Drop Weight Mechanical 
Properties Tester. 

It should be noted that with no sample in the DWMPT there is a strong 
tendency for ringing to occur upon impact. This ringing is due to the shock 
wave generated when the two hard surfaces come into contact, and continues due 
to reflection at the boundaries of the ram and force transducer. This wave 
is not noticed with a sample in the impact tester since any shock wave 
generated is initially much smaller and is attenuated rapidly by the impedance 
mismatch between the ram,   sample,   and gage. 

B. The DWMPT Standardization 

Two samples of the 7075-T6 aluminum were used for the standardization of 
the DWMPT. Sample 1 had its ends unlubricated while Sample 2 had a small 
amount of light oil added to each end to help keep the faces from binding upon 
compression. A graphical representation of the data obtained is given in 
Figures 9 through 13. Figure 9 shows the stress and the EODF strain for a 
typical event. Figures 10 and 11 indicate the stress and strain region that 
is used in the calculation of the modulus for the strain gage and EODF 
measurements, respectively. Figures 12 and 13 show the stress vs strain over 
the same regions used in Figures 10 and 11, respectively. From these curves, 
a least squares fit to a straight line is made to determine the modulus of the 
aluminum. Table 2 lists the results, with no correction for rig motion, for 
these  two  samples. 
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TABLE 2.    DROP WEIGHT TEST RESULTS FOR 7075-T6  ALUMINUM 
(Uncorrected for  Rig Motion) 

Sample 1 - Nonlubricated Ends 

Drop 

1 
2 
3 
J| 

Avg. 

Sample 2 - Lubricated Ends 

1 
2 
3 

Avg. 82.8 ± 1.8 ^8.2 ± 0.8 

EG E0 

80.0 GPa 11.8 GPa 
79-3 50.6 
80.3 56.1 
80.0 50.8 
79.9 ± 0. J) 52.5 ± 2.5 

80.0 38.1 
85.0 48.5 
83.8 17-1 
82.5 118.9 
82.8 ± 1.8 H8.2 

Excludes First Drop. 

Inspection of these results reveals the following observations. First, 
all the optical displacement measured modulus values are significantly lower 
than the gage measured values. This indicates that the rig compliance is 
significant for these measurements. Next, the EQ values for the first drops 
deviate markedly from the values measured on subsequent drops. Also, there is 
a significant difference in the EQ values because of the difference in binding 
between the lubricated and nonlubricated sample ends. This difference is 
likely to also be responsible for the larger scatter in the nonlubricated EQ 
values. Finally, the strain gage measured modulus produces fairly consistent 
values with EQ averaging 81.1 GPa, for both the lubricated and unlubricated 
samples. This is higher than the accepted tensile value of E = 71.7 GPa,^ but 
compressional  tests usually yield higher modulus measurements. 

The overall lower values obtained for EODF measured moduli are due to rig 
motion. The effective rig modulus calculated from Equation M for the 
aluminum samples is Ep = IHO ± 10 GPa. (Note, Ep is dependent on sample 
dimensions.) This value can now be used in Equation 5 to obtain the 
corrected modulus value. Table 3 shows these corrected modulus values using 
this Ep. 

The lower moduli measured on the first drop of the EODF values are the 
result   of   small   polishing   ridges   present   on   the   sample   ends.        Larger 

11 
Aluminum Standards and Data 1982, p. 32, The Aluminum Association, Inc., 
Washington, DC, 1982. 
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TABLE 3. 7075-T6 ALUMINUM RESULTS AFTER DWMPT  CORRECTION 

EG GPa E0 GPa Ec GPa 

Nonlubricated Ends        79-9 52.5 8H.0 
Luhrloafd Bnda 82.8 i<8.2 73-0 

displacements caused by the deformation or flattening of these ridges during 
the first drop produce an apparently lower modulus as determined with the 
displacement follower. The strain gage measured values are not sensitive to 
the displacements produced by end deformation, and do not show this first drop 
effect. 

The higher moduli measured by the strain gages can be understood in terms 
of the binding that takes place at the upper and lower sample surfaces during 
compression. Friction between the surfaces of the sample and anvil causes 
the measured value of the modulus to be higher than the actual value because 
the limited radial displacement results in limited axial displacement. The 
degree of binding will determine how much larger the measured modulus will be. 
With no slippage between the surfaces, the apparent modulus can be shown by 
calculation to be 1.5 times the tensile value. This effect is demonstrated 
by comparing the EODF values for the lubricated and unlubricated samples. It 
is not completely understood why this same trend is not repeated for the 
strain gage values. However, it is not unreasonable to suspect that strain 
gages, mounted some distance from the sample ends, would be less sensitive to 
this effect than the optically measured values due to the difference in the 
field over which the strain measurement is made. For the strain gages this 
field is somewhat isolated from the ends, whereas the displacement follower 
utilizes the entire length of the sample for its strain measurement. This 
effect is shown in Table 3 by noting the difference between the lubricated and 
unlubricated values. 

By taking the motion of the drop weight tester into account, the 
apparatus has been shown to give average, high strain rate values for modulus 
that agree with the strain gage values within 5 percent, and are within 9 
percent of the standard handbook value. It should also be pointed out that 
since the modulus of most propellants is much lower (0.2 to 2.5 GPa) than that 
of aluminum, larger displacements will be measured for propellant grains. 
This will reduce the uncertainty in the displacement measurements by 
increasing the optical displacement follower signal to noise ratio, and result 
in more accurate modulus measurements. 

C.   The Test lar  Noncoaxial  Impact (BepdiPg) 

Figures 1^ and 15 show the results from one of the bending tests. 
Figure 1^ shows typical curves comparing the strains on opposite sides of the 
aluminum cylinder during compression. Figure 15 shows the percent difference 
in strain during the impact. These values are calculated by taking the 
difference in strain and dividing by the average strain. The large values at 
the beginning and end of the event are due to large relative differences at 
small   strains.     The  average   percent  difference was calculated using only 
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strains  larger  than 25  percent  of the maximum  strain.     These averages for the 
five drops are listed  in Table M. 

TABLE 1|.     BENDING  TEST RESULTS FOR 7075-T6  ALUMINUM 

Orientation Average % Difference in Strain 

0 deg 10 % 
90 31 

180 -18 
270 -5 
360 7 

The data were fit to Equation 6 and the values determined for A and B are 
A = H.I and B = 22.H with QQ = 53.6 degrees. Figure 16 shows how this curve 
compared with the data. This indicated that out of a maximum possible 26.5 
percent difference in strains, ^J.l percent was due to the sample and 22.4 
percent was due to the rig. Since the maximum strain during the bending 
tests was about 0.5 percent, the maximum difference in strain was 0.13 
percent. This value indicated the degree that the compressing surfaces (the 
ram base and the force gage) were not parallel, and corresponded to a 
distance, for the 11.4 mm sample, of 0.015 mm. Since the resolution of the 
EODF was 0.001 mm this effect was measurable, but this difference is much 
smaller than the expected variations in the distance between the ends of 
propellant samples. Also, the propellant surface is not expected to be flat 
to this degree. The rig, therefore, will not cause any bending that may 
take  place during compression of propellant  samples. 

IV.   CONCLUSIONS 

A technique has been developed to measure the mechanical properties of 
gun propellant grains at high strain rates. The device measures the sample 
displacement and impact force simultaneously. It has been standardized with 
a material that has a strain-rate-independent modulus and was found to give 
reasonably consistent and accurate results. When testing propellant samples, 
which generally have moduli an order of magnitude lower than that of aluminum, 
the accuracy of the results will significantly improve. This is due to the 
larger displacement measurements and much smaller rig compliance that will be 
encountered with the softer samples. This development represents significant 
progress toward the establishment of a simple test to identify propellants 
with potential performance problems. 
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USER EVALUATION OF REPORT 

Please take a few minutes to answer the questions below; tear out 
this sheet, fold as indicated, staple or tape closed, and place 
in the mail.  Your comments will provide us with information for 
improving future reports. 

1. BRL Report Number  

2. Does this report satisfy a need?  (Comment on purpose, related 
project, or other area of interest for which report will be used.) 

3. How, specifically, is the report being used?  (Information 
source, design data or procedure, management procedure, source of 
ideas, etc.) 

4. Has the information in this report led to any quantitative 
savings as far as man-hours/contract dollars saved, operating costs 
avoided, efficiencies achieved, etc.? If so, please elaborate. 

5.  General Comments (Indicate what you think should be changed to 
make this report and future reports of this type more responsive 
to your needs, more usable, improve readability, etc.)    

6.  If you would like to be contacted by the personnel who prepared 
this report to raise specific questions or discuss the topic, 
please fill in the following information. 
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Telephone Number: 

Organization Address: 


